Lower bounds for the Quadratic Minimum Spanning Tree Problem based on reduced cost computation
نویسندگان
چکیده
The Minimum Spanning Tree Problem (MSTP) is one of the most known combinatorial optimization problems. It concerns the determination of a minimum edge-cost subgraph spanning all the vertices of a given connected graph. The Quadratic Minimum Spanning Tree Problem (QMSTP) is a variant of the MST whose cost considers also the interaction between every pair of edges of the tree. In this paper we review different strategies found in the literature to compute a lower bound for the QMSTP and develop new bounds based on a reformulation scheme and some new mixed 0-1 linear formulations that result from a reformulationlinearization technique (RLT). The new bounds take advantage of an efficient way to retrive dual information from the MSTP reduced cost computation. We compare the new bounds with the other bounding procedures in terms of both overall strength and computational effort. Computational experiments indicate that the dual-ascent procedure applied to the new RLT formulation provides the best bounds at the price of increased computational effort, while the bound obtained using the reformulation scheme seems to tradeoff between the bound tightness and computational effort.
منابع مشابه
A Metaheuristic Algorithm for the Minimum Routing Cost Spanning Tree Problem
The routing cost of a spanning tree in a weighted and connected graph is defined as the total length of paths between all pairs of vertices. The objective of the minimum routing cost spanning tree problem is to find a spanning tree such that its routing cost is minimum. This is an NP-Hard problem that we present a GRASP with path-relinking metaheuristic algorithm for it. GRASP is a multi-start ...
متن کاملSOLVING A STEP FIXED CHARGE TRANSPORTATION PROBLEM BY A SPANNING TREE-BASED MEMETIC ALGORITHM
In this paper, we consider the step fixed-charge transportation problem (FCTP) in which a step fixed cost, sometimes called a setup cost, is incurred if another related variable assumes a nonzero value. In order to solve the problem, two metaheuristic, a spanning tree-based genetic algorithm (GA) and a spanning tree-based memetic algorithm (MA), are developed for this NP-hard problem. For compa...
متن کاملLower bounds and exact algorithms for the quadratic minimum spanning tree problem
Given a connected and undirected graph, the quadratic minimum spanning tree problem consists offinding one spanning tree that minimizes a quadratic cost function. We first propose an integer program-ming formulation based on the reformulation-linearization technique and show that such a formulationis stronger than previous ones in the literature. We then introduce a novel type of fo...
متن کاملA Lagrangian Relaxation Approach to the Generalized Minimum Spanning Tree Problem
The Generalized Minimum Spanning Tree Problem, denoted GMST, is a variant of the classical Minimum Spanning Tree problem, and consists of finding a minimum-cost tree spanning a subset of nodes which includes exactly one node from every cluster in an undirected graph whose nodes are partitioned into clusters and whose edges are defined between nodes belonging to different clusters. The GMST prob...
متن کاملOPTIMIZATION OF TREE-STRUCTURED GAS DISTRIBUTION NETWORK USING ANT COLONY OPTIMIZATION: A CASE STUDY
An Ant Colony Optimization (ACO) algorithm is proposed for optimal tree-structured natural gas distribution network. Design of pipelines, facilities, and equipment systems are necessary tasks to configure an optimal natural gas network. A mixed integer programming model is formulated to minimize the total cost in the network. The aim is to optimize pipe diameter sizes so that the location-alloc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers & OR
دوره 64 شماره
صفحات -
تاریخ انتشار 2015